
Abstract. The validity of B-splines as a universal basis
set for atomic Hartree–Fock–Roothaan calculations is
studied. In order to accomplish our aim, the ground-
state energies of neutral atoms He–Xe, cations Liþ–Xeþ,
and anions H�–I� with the nuclear charge Z � 54 are
calculated by the Hartree–Fock–Roothaan method with
the B-spline sets. All radial functions of the atoms and
singly charged ions are expanded by common B-spline
sets regardless of atomic systems and symmetries of
atomic orbitals. The energies obtained by the best
B-spline set are in excellent agreement with ten-digit
numerical Hartree–Fock results.
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1 Introduction

Atomic Hartree–Fock equations are solved usually by
two methods, that is, a numerical method and an
analytic method. A numerical Hartree–Fock (NHF)
method has been formulated by Froese Fischer [1], and
it can give very accurate results. On the other hand, an
analytic Hartree–Fock method has been developed by
Roothaan [2] using the Rayleigh–Ritz variational
procedure, and is often called the Hartree–Fock–
Roothaan (HFR) method. The HFR method can be
applied to polyatomic molecules because wave func-
tions are represented as basis set expansions. As the
basis set, Slater-type functions (STFs) or Gaussian-type
functions (GTFs) are usually employed; however,
before the actual application of the HFR method,
optimization of their nonlinear parameters (i.e., expo-
nents), which is laborious and tedious work, has to be
carried out.

Clementi and Roetti [4] published a monumental
compilation of atomic HFR wave functions calculated
with fully optimized STFs in 1974. It is known that their
calculations include some errors compared to the NHF
results. Tatewaki and Sekiya [5] and Bunge et al. [6] have
improved the results of Clementi and Roetti by
employing optimal STF principal quantum numbers
in addition to optimizing the exponents.

Some methods to reduce the load needed for the
optimization of STF and GTF exponents have been
proposed and applied extensively. The simplest method
would be the even-tempering scheme proposed by
Raffenetti [7]. The even-tempering method generates
the exponents for each symmetry by two parameters
through a geometric sequence. An interesting applica-
tion of the even-tempering method has been performed
by Koga et al. [8]. They employed two independent
geometric sequences for generating STF exponents in
each symmetry. Their method is called the double even-
tempering scheme. Huzinaga and coworkers [9] have
further extended the even-tempering method to a more
complicated procedure with four parameters; this is
called the well-tempering method. As far as we know,
this well-tempering method has been applied to GTFs
only.

In addition to STFs and GTFs, piecewise polyno-
mials can be used in practical calculations. The piece-
wise polynomials were introduced to atomic calculations
by Gilbert and coworkers [11,12]. Their use has been
further developed by the group of Silverstone [13,14,15].
Especially, B-splines have been used for atomic calcu-
lations recently. The first application of the B-splines to
atomic calculations was carried out by Shore [16]. It
has been further applied to atomic Dirac and Hartree-
Fock equations with the Galerkin procedure by Bott-
cher and Strayer [17], Johnson and coworkers [18,19],
Froese Fischer and coworkers [20,21], and others. In
addition, Jeng and Hsue [22] have carried out atomic
relativistic density functional calculations with the
B-splines.

The B-splines are flexible and free from computa-
tional linear dependence. The flexibility of the B-splinese-mail: luna@trinity.lets.chukyo-u.ac.jp
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will make it possible to apply a common B-spline set to
all atoms irrespective of orbital symmetry without loss of
accuracy. Consequently, the B-spline set can be a can-
didate for a universal basis set. Moreover, this univer-
sality will make it possible to store all atomic integrals
over the B-splines so that they can be used for various
atomic calculations. In the present work, we studied the
validity of the B-splines as a universal basis set. In order
to accomplish our aim, we applied the B-spline sets to
the HFR calculations of the ground states of neutral
atoms He–Xe, cations Liþ–Xeþ, and anions H�–I� with
the nuclear charge Z � 54, and compared their energies
with the ten-digit NHF energies obtained by Koga and
coworkers [23,24].

In the next section, we explain the details of the
B-spline HFR calculations for the atomic systems. The
results and discussions are given in the third section.
Hartree atomic units are used throughout.

2 Computational method

The B-splines of order K are piecewise polynomials of
degree K � 1 on a knot sequence in a cavity of radius R.
The knot sequence is a set of points defined on a interval
½0;R�. To construct a set of M B-splines, the knot
sequence has to be generated in ½0;R�. The quality of
the B-spline set depends not only on the order and size,
but also on the knot sequence; hence, the way to
generate the knot sequence is important. Several proce-
dures to generate the knot sequence have been proposed
by Gilbert and Bertoncini [11]. In the present work, to
obtain a concentration of the knots near the nucleus
where atomic orbitals are changing rapidly, we em-
ployed the knot sequence with K-fold multiplicity ftig
(i ¼ 1; 2; . . . ;M þ K) :

ti ¼
0; i ¼ 1; . . . ;K

R1

Pi�K

j¼1
aj�1; i ¼ K þ 1; . . . ;M

R; i ¼ M þ 1; . . . ;M þ K

8
><

>:
; ð1Þ

where R1 is the initial point and a is a parameter to
specify the distribution of the knots. a is chosen to
satisfy the following equation:

R ¼ R1ð1þ aþ a2 þ � � � þ aM�KÞ : ð2Þ
The B-splines of order K, fBi;KðrÞg, are constructed
recursively by de Boor–Cox relations [10] :

Bi;1ðrÞ ¼
1; ti � r < tiþ1
0; otherwise

�

ð3Þ

and

Bi;KðrÞ ¼
r � ti

tiþK�1 � ti
Bi;K�1ðrÞ

þ tiþK � r
tiþK � tiþ1

Biþ1;K�1ðrÞ : ð4Þ

Thus, Bi;KðrÞ is K � 1 degree polynomials of r. Bi;KðrÞ is
nonzero in ti � r < tiþK . The first derivative of Bi;KðrÞ,
B0i;KðrÞ, is calculated by the formula

B0i;KðrÞ ¼ ðK � 1Þ Bi;K�1ðrÞ
tiþK�1 � ti

� Biþ1;K�1ðrÞ
tiþK � tiþ1

� �

ð5Þ

with Eqs.(3) and (4).
We expand the radial function PnkðrÞ of the atomic

orbital with symmetry k

wnkmðr; h;uÞ ¼ r�1PnkðrÞY m
k ðh;uÞ ð6Þ

by the B-splines and enforce the boundary conditions
Pnkð0Þ ¼ 0 and PnkðRÞ ¼ 0. Since the first and last terms
of the B-splines with K-fold multiple knots are nonzero
at r ¼ 0 and at r ¼ R, respectively, we remove them from
the basis set to satisfy the boundary conditions. Namely,
the radial function PnkðrÞ is expanded as

PnkðrÞ ¼
XN

i¼1
Cnk;iBiþ1;KðrÞ ; ð7Þ

where N is the number of the B-splines used in the HFR
calculations, i.e., N ¼ M � 2. We use the same basis set
regardless of atomic systems and symmetries of their
orbitals.

All the integrals needed in HFR calculations are
evaluated by the Gauss integration procedure. The one-
electron overlap, kinetic, and nuclear attraction integrals
are

Sij ¼
ZR

0

drBi;KðrÞBj;KðrÞ ; ð8Þ

Tij ¼
1

2

ZR

0

dr
h
B0i;KðrÞB0j;KðrÞ:

þ kðkþ 1Þr�2Bi;KðrÞBj;KðrÞ
i
; ð9Þ

and

Vij ¼
ZR

0

drr�1Bi;KðrÞBj;KðrÞ ; ð10Þ

respectively. Evaluation of 1
2 NðN þ 1Þ one-electron inte-

grals (OEIs) is needed in usual HFR calculations [3];
however, the number of OEIs, NOEI, needed in the
B-spline HFR calculations is less than 1

2 NðN þ 1Þ
because products Bi;KðrÞBj;KðrÞ (i � j) vanish outside
the region ti � r < tjþK owing to the definition of the
B-splines. Hence, only OEIs which satisfy the conditions
i� j < K and i � j have to be evaluated. Therefore,

NOEI ¼
1

2
Kð2N � K þ 1Þ : ð11Þ

The supermatrices Pkij;lkl and Qkij;lkl defined by Root-
haan and Bagus [3] are rewritten by using two-electron
integrals (TEIs)

Rm
ij;kl ¼

ZR

0

dr1

ZR

0

dr2Bi;Kðr1ÞBj;Kðr1Þ

� rm
<

rmþ1
>

Bk;Kðr2ÞBl;Kðr2Þ ð12Þ
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as follows :

Pkij;lkl ¼ R0
ij;kl �

1

2

Xkþl

m¼jk�lj
AklmRm

ik;jl ð13Þ

and

Qkij;lkl ¼
X2ðk;lÞ<

m¼0
JklmRm

ij;kl �
1

2

Xkþl

m¼jk�lj
KklmRm

ik;jl ; ð14Þ

where Aklm, Jklm, and Kklm are numerical coefficients
[3,25]. Since the supermatrices contain redundant TEIs,
we have to evaluate only the distinct nonzero TEIs,
which satisfy the conditions i� j < K, k � l < K, i � j,
k � l, and 1

2 iði� 1Þ þ j � 1
2 kðk � 1Þ þ l. The last three

conditions arise from the permutational symmetries of
indices i, j, k, and l of TEIs. The number of TEIs, NTEI,
needed for the construction of the supermatrices finally
becomes

NTEI ¼
1

2
NOEIðNOEI þ 1Þð2kmax þ 1Þ ; ð15Þ

where kmax is the maximum azimuthal quantum number
of an atom under consideration.

The parameters of the B-spline sets employed in the
present HFR calculations are summarized in Table 1.
The maximum value of R was 40 for the neutral atoms
and cations. For the anions, we employed R ¼ 40, 50,
and 60 because of the diffuse character of their orbitals.
The basis set with small K cannot give an accurate de-
scription of the orbitals near the nucleus unless the knots
near the nucleus are sufficiently close together. Hence,
we should use smaller R1 for small K. Hereafter, we
denote a set of B-splines specified by K, N , and R as BK

N ;R
to simplify the notation.

All the HFR calculations with the B-splines were
carried out by our atomic self-consistent-field program
code based on the algorithm of Roothaan and Bagus [3].

3 Results and discussions

We calculated the B-spline HFR energies for all the
atomic systems using a personal computer (AMDDuron

1GHz) and obtained ten-digit results. Although there are
many integrals, it is possible to reduce the computational
amount by storing all the integrals over a common B-
spline set throughout the calculations. The calculated
virial ratios were in agreement to within 7–10 digits of
the exact value for all the cases. For the neutral atoms
and cations, the errors of the virial ratios decreased with
increasing order or size of the B-splines. All the virial
ratios calculated with B9

40;40 were in perfect agreement to
within ten-digits of the exact value. The virial ratio
errors for the anions decreased with increasing R owing
to the diffuse character of their orbitals.

We have summarized the deviations of the B-spline
HFR energies from the ten-digit NHF results for the
neutral atoms [23] in Table 2. The energy deviations
increase with increasing Z. This tendency is obvious for
the basis sets with smaller K. In addition, Table 2 indi-
cates that the quality of the B-spline sets depends on K.
For example, B5

30;30 yields an energy deviation for Xe
165 times larger than B9

30;30; however, the energy devi-
ation of Xe decreases with increasing K. When N and R
are large, even the B-spline sets with small K give accu-
rate results for the neutral atoms. In fact, one can see
from Table 2 that the quality of B5

40;40 equals that of
B6

30;30. Similarly, B6
40;40 also has the same equality as

B9
30;30. The smallest basis set in the present work, B9

25;25,

gives comparable results as B6
30;30 and B5

40;40 up to the
third-row atoms. B7

40;40, of which K, N , and R are larger,
gives very accurate HFR energies. Although the results
are not shown in Table 2, the HFR energies given by
B9

40;40 are in perfect agreement with the ten-digit NHF
values. Hence, B9

40;40 can be used as a universal basis set
for the neutral atoms.

In addition to the neutral atoms, we calculated
the B-spline HFR energies of the cations. Since the
parameter dependence of the cation total energies is
parallel to that of the neutral cases listed in Table 2, we
have not shown their values. It is found that the basis
sets for the neutral atoms are applicable to the cations
without sacrificing the total energy because electron
distributions of the cations are more compact than
those of the neutral atoms. Therefore, B9

40;40 can be
also used as a universal basis set for the cations as well
as the neutral atoms.

Table 1. Parameters of B-spline
sets Neutral atoms and cations Anions

N R K R1 Notation N R K R1 Notation

25 25 9 0.020 B9
25;25 40 40 7 0.008 B7

40;40

9 0.010 B9
40;40

30 30 5 0.005 B5
30;30

6 0.007 B6
30;30 40 50 7 0.008 B7

40;50

7 0.009 B7
30;30 9 0.010 B9

40;50

9 0.014 B9
30;30

40 60 7 0.008 B7
40;60

40 40 5 0.004 B5
40;40 9 0.010 B9

40;60

6 0.005 B6
40;40

7 0.008 B7
40;40

9 0.010 B9
40;40
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In Table 3, we have summarized the deviations of the
B-spline HFR energies from the ten-digit NHF results
for the anions [24]. An application ofB9

40;40 to the anions
causes some energy deviations, as seen from Table 3. In
particular, for the alkali-metal anions and Y�, the
energy deviations are quite large owing to the existence

of loosely bound electrons in the outermost orbitals.
However, the energy deviations do not depend on K.
This implies that our B-spline size N is sufficient for the
anions. Since the outermost orbitals of the anions are
more diffuse than those of the neutral atoms, the energy
deviations decrease with increasing R. Consequently, the

Table 2. Deviations of the B-spline Hartree–Fock–Roothaan (HFR) energies from the ten-digit numerical Hartree–Fock (NHF) results for
the neutral atoms (l hartree)

Z Atom Configuration State N ;R ¼ 25 N ;R ¼ 30 N ;R ¼ 40a NHF [23]

K ¼ 9 K ¼ 5 K ¼ 6 K ¼ 7 K ¼ 9 K ¼ 5 K ¼ 6 K ¼ 7
B9

25;25 B5
30;30 B6

30;30 B7
30;30 B9

30;30 B5
40;40 B6

40;40 B7
40;40

2 He 1s2 1S 0.001 0.046 0.003 0.001 0.000 0.005 0.001 0.000 )2.861679996
3 Li [He]2s1 2S 0.003 0.172 0.010 0.001 0.000 0.016 0.001 0.000 )7.432726931
4 Be [He]2s2 1S 0.01 0.40 0.02 0.00 0.00 0.04 0.00 0.00 )14.57302317
5 B [He]2s22p1 2P 0.01 0.72 0.04 0.01 0.00 0.07 0.00 0.00 )24.52906073
6 C [He]2s22p2 3P 0.02 1.16 0.07 0.00 0.00 0.11 0.00 0.00 )37.68861896
7 N [He]2s22p3 4S 0.03 1.74 0.11 0.01 0.00 0.16 0.01 0.00 )54.40093421
8 O [He]2s22p4 3P 0.04 2.45 0.15 0.02 0.00 0.23 0.01 0.00 )74.80939847
9 F [He]2s22p5 2P 0.06 3.33 0.21 0.03 0.00 0.32 0.01 0.00 )99.40934939
10 Ne [He]2s22p6 1S 0.1 4.4 0.3 0.0 0.0 0.4 0.0 0.0 )128.5470981
11 Na [Ne]3s1 2S 0.1 5.9 0.4 0.0 0.0 0.5 0.0 0.0 )161.8589116
12 Mg [Ne]3s2 1S 0.2 7.9 0.5 0.0 0.0 0.7 0.0 0.0 )199.6146364
13 Al [Ne]3s23p1 2P 0.3 10.5 0.7 0.1 0.1 1.0 0.1 0.0 )241.8767073
14 Si [Ne]3s23p2 3P 0.5 13.6 0.9 0.1 0.0 1.3 0.0 0.0 )288.8543625
15 P [Ne]3s23p3 4S 0.6 17.5 1.2 0.2 0.0 1.7 0.1 0.0 )340.7187810
16 S [Ne]3s23p4 3P 0.9 22.0 1.5 0.2 0.0 2.0 0.1 0.0 )397.5048959
17 Cl [Ne]3s23p5 2P 1.4 27.4 2.0 0.3 0.0 2.5 0.1 0.0 )459.4820724
18 Ar [Ne]3s23p6 1S 1.8 33.7 2.5 0.3 0.0 3.1 0.1 0.0 )526.8175128
19 K [Ar]4s1 2S 2.2 41.6 3.2 0.5 0.1 3.9 0.2 0.0 )599.1647868
20 Ca [Ar]4s2 1S 3.2 51.1 3.9 0.5 0.0 4.7 0.2 0.0 )676.7581859
21 Sc [Ar]4s23d1 2D 4.5 60.7 4.7 0.6 0.0 5.5 0.2 0.0 )759.7357180
22 Ti [Ar]4s23d2 3F 5.8 71.2 5.6 0.8 0.1 6.5 0.3 0.0 )848.4059970
23 V [Ar]4s23d3 4F 6.3 82.6 6.6 0.9 0.1 7.5 0.3 0.0 )942.8843377
24 Cr [Ar]4s13d5 7S 6 94 7 1 0 8 0 0 )1043.356376
25 Mn [Ar]4s23d5 6S 8 109 9 2 0 10 1 0 )1149.866252
26 Fe [Ar]4s23d6 5D 10 123 10 1 0 11 0 0 )1262.443665
27 Co [Ar]4s23d7 4F 14 140 12 2 0 13 1 0 )1381.414553
28 Ni [Ar]4s23d8 3F 18 158 13 2 0 14 0 0 )1506.870908
29 Cu [Ar]4s13d10 2S 20 175 15 2 0 16 1 0 )1638.963742
30 Zn [Ar]4s23d10 1S 21 197 17 2 0 18 1 0 )1777.848116
31 Ga [Ar]4s23d104p1 2P 23 222 20 3 1 21 1 0 )1923.261010
32 Ge [Ar]4s23d104p2 3P 24 249 22 4 1 23 1 0 )2075.359734
33 As [Ar]4s23d104p3 4S 28 278 25 4 0 26 1 0 )2234.238654
34 Se [Ar]4s23d104p4 3P 35 312 29 5 1 29 2 0 )2399.867612
35 Br [Ar]4s23d104p5 2P 46 349 32 5 1 32 1 0 )2572.441333
36 Kr [Ar]4s23d104p6 1S 62 390 36 6 1 36 1 0 )2752.054977
37 Rb [Kr]5s1 2S 81 436 41 7 1 41 2 0 )2938.357454
38 Sr [Kr]5s2 1S 102 487 46 7 1 45 2 0 )3131.545686
39 Y [Kr]5s24d1 2D 119 543 52 9 2 51 3 0 )3331.684170
40 Zr [Kr]5s24d2 3F 128 603 59 10 2 57 3 0 )3538.995065
41 Nb [Kr]5s14d4 6D 128 666 65 12 3 63 3 0 )3753.597728
42 Mo [Kr]5s14d5 7S 124 735 73 13 3 69 4 1 )3975.549500
43 Tc [Kr]5s24d5 6S 121 813 82 15 3 76 4 0 )4204.788737
44 Ru [Kr]5s14d7 5F 133 892 91 17 4 84 4 1 )4441.539488
45 Rh [Kr]5s14d8 4F 165 979 101 18 4 92 4 0 )4685.881704
46 Pd [Kr]4d10 1S 221 1071 112 21 5 100 5 0 )4937.921024
47 Ag [Kr]5s14d10 2S 299 1174 124 23 6 110 5 0 )5197.698473
48 Cd [Kr]5s24d10 1S 391 1288 138 27 8 121 7 1 )5465.133143
49 In [Kr]5s24d105p1 2P 484 1410 153 30 9 133 7 1 )5740.169156
50 Sn [Kr]5s24d105p2 3P 564 1543 168 33 10 145 7 0 )6022.931695
51 Sb [Kr]5s24d105p3 4S 624 1688 186 38 12 159 8 1 )6313.485321
52 Te [Kr]5s24d105p4 3P 663 1844 205 41 12 173 9 1 )6611.784059
53 I [Kr]5s24d105p5 2P 693 2014 227 46 13 189 10 1 )6917.980896
54 Xe [Kr]5s24d105p6 1S 736 2199 252 51 13 207 11 1 )7232.138364
aResults for K ¼ 9 exactly coincide with the NHF values
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B-spline set with R ¼ 60, B9
40;60, yields HFR energies

which are in excellent agreement with the NHF values
for the anions. Although results have not been shown,
B9

40;60 also gives HFR energies which are in perfect
agreement with the ten-digit NHF values for the neutral
atoms and cations.

4 Conclusion

In the present work, we studied the validity of the
B-splines as a universal basis set for the HFR calculations
of the neutral atoms He–Xe, cations Liþ–Xeþ, and
anions H�–I�. We found thatB9

40;40 andB9
40;60 give HFR

energies which were excellent agreement with the ten-
digit NHF results for the neutral atoms and cations and

for the anions, respectively. Moreover, the HFR energies
of the neutral atoms and cations calculated with B9

40;60

are also in excellent agreement with the ten-digit NHF
results. Therefore, we conclude that B9

40;60 can be used as
a universal basis set for the HFR calculations of the
neutral atoms with Z � 54 and their singly charged ions.

We examined only the total energies of the atomic
systems with s, p, or d orbitals. However, since exam-
ination of other properties, such as orbital energies, or-
bital cusps, or electron density at the nucleus, is also of
interest, we will discuss these properties in the near fu-
ture. Further, we will also study the applicability of the
B-splines to f orbitals and to correlating orbitals with
higher symmetries in post-Hartree–Fock calculations,
such as the configuration interaction method or pertur-
bation calculations. Work in this direction is in progress.

Table 3. Deviations of the B-spline HFR energies from the ten-digit NHF results for the anions (l hartree)

Z Atom Configuration State N ¼ 40;R ¼ 40 N ¼ 40;R ¼ 50 N ¼ 40;R ¼ 60 NHF [24]

K ¼ 7 K ¼ 9 K ¼ 7 K ¼ 9 K ¼ 7 K ¼ 9
B7

40;40 B9
40;40 B7

40;50 B9
40;50 B7

40;60 B9
40;60

1 H� 1s2 1S 0.000 0.000 0.000 0.000 0.000 0.000 )0.487929734
3 Li� [He]2s2 1S 0.420 0.420 0.014 0.014 0.001 0.000 )7.428232061
5 B� [He]2s22p2 3P 0.00 0.00 0.00 0.00 0.00 0.00 )24.51922137
6 C� [He]2s22p3 4S 0.00 0.00 0.00 0.00 0.00 0.00 )37.70884362
7 N� [He]2s22p4 3P 0.00 0.00 0.00 0.00 0.00 0.00 )54.32195889
8 O� [He]2s22p5 2P 0.00 0.00 0.00 0.00 0.00 0.00 )74.78974593
9 F� [He]2s22p6 1S 0.00 0.00 0.00 0.00 0.00 0.00 )99.45945391
11 Na� [Ne]3s2 1S 0.7 0.7 0.0 0.0 0.0 0.0 )161.8551260
13 Al� [Ne]3s23p2 3P 0.1 0.1 0.0 0.0 0.0 0.0 )241.8782653
14 Si� [Ne]3s23p3 4S 0.0 0.0 0.0 0.0 0.0 0.0 )288.8896602
15 P� [Ne]3s23p4 3P 0.0 0.0 0.0 0.0 0.0 0.0 )340.6988736
16 S� [Ne]3s23p5 2P 0.0 0.0 0.0 0.0 0.0 0.0 )397.5384302
17 Cl� [Ne]3s23p6 1S 0.0 0.0 0.0 0.0 0.0 0.0 )459.5769253
19 K� [Ar]4s2 1S 3.1 3.1 0.2 0.2 0.0 0.0 )599.1619170
21 Sc� [Ar]4s23d2 3F 0.3 0.2 0.0 0.0 0.0 0.0 )759.6887738
22 Ti� [Ar]4s23d3 4F 0.3 0.3 0.0 0.0 0.0 0.0 )848.3725498
23 V� [Ar]4s23d4 5D 0.2 0.2 0.0 0.0 0.0 0.0 )942.8631322
24 Cr� [Ar]4s23d5 6S 0 0 0 0 0 0 )1043.337097
25 Mn� [Ar]4s23d6 5D 0 0 0 0 0 0 )1149.729110
26 Fe� [Ar]4s23d7 4F 0 0 0 0 0 0 )1262.367074
27 Co� [Ar]4s23d8 3F 1 1 1 0 1 0 )1381.351810
28 Ni� [Ar]4s23d9 2D 0 0 0 0 0 0 )1506.821133
29 Cu� [Ar]4s23d10 1S 0 0 0 0 0 0 )1638.964145
31 Ga� [Ar]4s23d104p2 3P 0 0 0 0 0 0 )1923.260381
32 Ge� [Ar]4s23d104p3 4S 0 0 0 0 0 0 )2075.394742
33 As� [Ar]4s23d104p4 3P 1 0 1 0 1 0 )2234.222940
34 Se� [Ar]4s23d104p5 2P 0 0 0 0 0 0 )2399.904726
35 Br� [Ar]4s23d104p6 1S 0 0 1 0 1 0 )2572.536273
37 Rb� [Kr]5s2 1S 5 5 1 0 0 0 )2938.354900
39 Y� [Kr]5s24d15p1 1D 18 18 3 3 1 1 )3331.683116
40 Zr� [Kr]5s24d3 4F 1 1 1 0 1 0 )3538.994500
41 Nb� [Kr]5s24d4 5D 0 0 0 0 0 0 )3753.578216
42 Mo� [Kr]5s24d5 6S 0 0 0 0 0 0 )3975.526268
43 Tc� [Kr]5s24d6 5D 0 0 0 )1 0 0 )4204.764631
44 Ru� [Kr]5s24d7 4F 1 0 1 0 1 0 )4441.528477
45 Rh� [Kr]5s24d8 3F 0 0 0 0 0 0 )4685.875582
46 Pd� [Kr]5s24d9 2D 0 0 0 0 1 0 )4937.891544
47 Ag� [Kr]5s24d10 1S 0 0 1 0 1 0 )5197.700050
49 In� [Kr]5s24d105p2 3P 0 0 1 0 1 0 )5740.175141
50 Sn� [Kr]5s24d105p3 4S 1 0 1 0 1 0 )6022.972657
51 Sb� [Kr]5s24d105p4 3P 1 0 1 0 1 0 )6313.481518
52 Te� [Kr]5s24d105p5 2P 1 0 2 0 2 0 )6611.827949
53 I� [Kr]5s24d105p6 1S 1 0 2 0 2 0 )6918.075883
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